SUT-Biorefinery Pilot Plant

EXPO

24-25 พฤศจิกายน 2565 , 10.00-18.00 น. ศูนย์ประชุม ไคซ์ ขอนแก่น

งานแสดงเทคโนโลยี เครื่องมือและบริการ ด้านห้องปฏิบัติการทางวิทยาศาสตร์ และ งานแสดงนวัตกรรมและเทคโนโลยีชีวภาพ เพื่อ **"การพัฒนา"** และ **"การลงทุน"**

สำหรับภาคตะวันออกเฉียงเหนือ และกลุ่มประเทศลุ่มน้ำโขง

ลงทะเบียน คลิก

Assoc. Prof. Dr. Apichat Boontawan

Chair, School of Biotechnology, Institute of Agricultural Technology Suranaree University of Technology

โรงงานต้นแบบไบโอรีไฟเนอรื่มหาวิทยาลัยเทคโนโลยีสุรนารี

รองศาสตราจารย์ ดร อภิชาติ บุญทาวัน หัวหน้าสาขาเทคโนโลยีชีวภาพ สำนักวิชาเทคโนโลยีการเกษตร มหาวิทยาลัยเทคโนโลยีสุรนารี

Crisis of the world economic

วันที่ 14 พฤศจิกายเ	USEINA TNN ONLINE
ชนิด	าน่วย : บาบสิตร วันนี้
ไฮดีเซล B20 S	34.94
ไฮดีเซล S	34.94
ไฮดีเซล S B7	34.94
แก๊สโซฮอล์ E85 S EVO	33.84
แก๊สโซฮอล์ E20 S EVO	35.04
แก๊สโซฮอล์ 91 S EVO	35.88
แก๊สโซฮอล์ 95 S EVO	36.15
เบนซินออกเทน 95	43.56
ไฮพธีเมียม ดีเซล S B7	43.66

VAL AN

Oleochemical industry (non food)

High plant oil price

Feed stock production

Land required (deforestation) Irrigation & fertilizer required Long plantation time (months or years) Processing steps

Potential of oil producing sources

Oil yield	Liter/Hectare/Year	Barrels/Hectare/Year
Soybean	400	2.5
Sunflower	800	5
Canola	1,600	10
Jatropha	2,000	12
Palm oil	6,000	36
Microbial oil	60,000-240,000	360-1,500

* A, Firoz et al., 2015. 'Third Generation Biofuel from Algae', Procedia Engineering, 105: 763-68.

Assoc. Prof. Dr. Mariena Ketudat-Cairns

Work started in 2015 for the screening of oleaginous yeast from various sources. More than 200 strains were isolated.

- For fuel and oleochemical industry (food security)
- Short fermentation time (7 days)
- High lipid content (20%)
- Unicellular (easy drying)

Rhodotorula paludigina CM33

10

Oil droplets are observed under fluorescence microscope

.

.

ยีสต์น้ำมัน

Small scale culture

Microbiol Resour Announc. 2020 May; 9(19): e00286-20. Published online 2020 May 7. doi: <u>10.1128/MRA.00286-20</u> PMCID: PMC7206493 PMID: <u>32381615</u>

Genome Sequence of the Oleaginous Yeast *Rhodotorula paludigena* Strain CM33, a Potential Strain for Biofuel Production

Chotika Gosalawit,^a Sumeth Imsoonthornruksa,^a Natteewan Udomsil,^b and Mariena Ketudat-Cairns^{Ma}

Antonis Rokas, Editor Antonis Rokas, Vanderbilt University;

Author information
Article notes
Copyright and License information
Disclaimer

Journal of Biotechnology 329 (2021) 56-64

Contents lists available at ScienceDirect

Journal of Biotechnology

journal homepage: www.elsevier.com/locate/jbiotec

The potential of the oleaginous yeast *Rhodotorula paludigena* CM33 to produce biolipids

Chotika Gosalawit^a, Sumeth Imsoonthornruksa^a, Brandon H. Gilroyed^b, Lucas Mcnea^b, Apichat Boontawan^a, Mariena Ketudat-Cairns^a, *

^a School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima, 30000, Thailand

^b School of Environmental Sciences, University of Guelph Ridgetown Campus, 120 Main Street East, Ridgetown, Ontario, NOP 2CO, Canada

Carbon sources

Main products

RYE

Crops

BARLEY

WHFAT

Factory

Wastewater Lignocellulose Molasses etc

Wastewater

Lignocellulosic Materials

Molasses

Scaling up in Pilot plant

Operated since 2019 1000 m²

SUT-Biorefinery Pilot Plant

Pre-treatment & saccharification

- 1000-L Jacket stirred tank
- Turbo sieve for solidliquid separation
- 5-hp in-line homogenizer
- Microfluidizer (30,000 psi)
- Filter press

Fermentor & Reactor

- 5-500 L Fermentors
- 50 L Reactive distillation reactor
- 50 L Polymerization reactor

Downstream processing

- Cross-flow microfiltration (50 m²)
- Ultrafiltration/Nanofiltration (25 m²)
- 100 & 50 L/h falling film evaporators
- Vacuum crystallizer
- Short path distillation
- Spray dryer
- Supercritical CO₂ extraction
- Adsorption for EtOH/H₂O and CH₄/CO₂ separation

Services

- Mass & Energy balance calculation
- Process simulation & plant design
- Equipment rental/hire Workshop
- Bioprocess validation

Size reduction by high pressure homogenizer

Microfluidizer

30,000 psi or 2000 atm

Microfluidizer

Size reduction of biomasses

1000-L Saccharification tank

Solid-Liquid Separation by centrifugal sieve

Solid-Liquid Separation by filter press

Dilute acid hydrolysis

CRUDE XYLAN FROM SUGARCANE BAGASSE

Bioreactors

Bioreactors

500-L

50-L

Cell recovery

Membrane processes

50 m² Microfiltration

Electrodialysis

Adsorption

200-L vacuum evaporator

Centrifuge

Spray dryer

37

Solvent extraction for lipid recovery

Rotary evaporation (20 L)

Falling Film Evaporation

3rd gen lipid production in 7 days (SDGs)

Chromatographic separation of carotenoid

Yeast extract for Feed (protein > 20%)

Opportunity for biofuel applications Whole cell burning for electricity Fast pyrolysis for bio-oil and bio-char **Biodiesel production**

Hydrothermal liquefaction (HTL) of lipid

Yeast cell

Bio-oil

Pongsatorn Poopisut, et. Al., (2022), Fast Pyrolysis of an Oleaginous Yeast *Rhodotorula paludigena* CM33 for Bio-Oil and Bio-Char Productions, Biomass and Bioenergy (under review)

Assoc. Prof. Dr. Adisak Pattiya, Mech Eng, Mahasarakhan University

Parr reactor for hydrothermal liquefaction

100-L HTL reactor (future work)

Features include

- PID temperature control with ramp and soak programming
- Variable speed motor and gear drive
- Three zone band heater or welded jacket
- Hoist for reactor head (manual or electric options) Bottom drain valve (actuated or manual options)
- Standard head fittings & internals include:
- · FKM O-ring head seal
- · Extra heavy duty magnetic drive
- · Stir shaft and stimer assembly
- · Safety rupture disc assembly
- · Pressure gage with optional pressure relief valve
- · Gas inlet and release needle valves
- · External solids charge assembly

100 L Stirred Reactor System shown with head "parked" on the stand.

UWJ.

หน่วยบริหารและจัดการทุน

100-L HTL reactor (Sumitomo)

Organic Solvent Nanofiltration (PMUC)

Pharmaceuticals / Specialty chemicals

- gentle API concentration & purification
- non-thermal solvent recovery & management
- room temperature solvent exchange

Natural Oils and products

- fractionation of crude extracts
- enrichment of natural compounds
- natural oils processing gentle separations

Bulk Chemicals

- continuous recovery of homogeneous catalysts
- decolorization of products
- product polishing
- solvent recovery

Oil- & Petro Chemistry

- solvent recovery in dewaxing
- removal of high boilers
 - tar components in FCC feed
 - purification of gas condensates
- homogeneous catalyst recovery

OSN system

Fractional distillation

Prof. Dr. Jürgen Rarey University of Oldenburg, Germany, ChEPS-KMUTT Korat citizen

Student exchange program SUT-Oldenburg

Fractional distillation

Crystallizer 100 kg

Process analytical technology (PAT)

Particle view measurement PVM

Focused beam reflectance measurement FBRM Raman spectroscopy

Crystallization kinetic

Particle view measurement PVM

Focused beam reflectance measurement FBRM

Raman spectroscopy

Reactive distillation reactor for biodiesel reaction

Short path distillation (SPD)

Pilot scale SPD for biodiesel (B100)

Valley of Death in Manufacturing Innovation Process

Funding and collaborators

หน่วยบริหารและจัดการทุน ด้านการเพิ่มความสามารถในการแข่งขันของประเทศ

SCG

สำนักงานนโยบาย และแผนพลังงาน กระทรวงพลังงาน

TTSF

มูลนิธิโทเร เพื่อการส่งเสริมวิทยาศาสตร์ ประเทศไทย

Thailand Toray Science Foundation

www.ttsf.or.th

สานักวานพัฒนาการวิจัยการเกษตร (องค์การมหาชน) AGRICULTURAL RESEARCH DEVELOPMENT AGENCY (PUBLIC ORGANIZATION)

Thank you

E-mail; apichat@sut.ac.th

